Interference Management in Wireless Networks

Babak Hassibi

joint work with Kishore Jaganathan and Christos Thrampoulidis

California Institute of Technology

IEEE Wireless Communications and Networking Conference
Doha, Qatar, April 5, 2016
Outline

- Interference Alignment
 - degrees-of-freedom
 - channel state issues, ergodic interference alignment
Outline

- Interference Alignment
 - degrees-of-freedom
 - channel state issues, ergodic interference alignment
- Topological Interference Alignment
 - low-rank matrix factorization
Outline

- Interference Alignment
 - degrees-of-freedom
 - channel state issues, ergodic interference alignment
- Topological Interference Alignment
 - low-rank matrix factorization
- Practical considerations
 - finite SNR
 - efficient algorithms
Outline

- Interference Alignment
 - degrees-of-freedom
 - channel state issues, ergodic interference alignment
- Topological Interference Alignment
 - low-rank matrix factorization
- Practical considerations
 - finite SNR
 - efficient algorithms
- Simulation results
 - cellular networks: comparison to frequency re-use
 - ad hoc networks: comparison to graph coloring
 - extensions to MIMO
Outline

- Interference Alignment
 - degrees-of-freedom
 - channel state issues, ergodic interference alignment
- Topological Interference Alignment
 - low-rank matrix factorization
- Practical considerations
 - finite SNR
 - efficient algorithms
- Simulation results
 - cellular networks: comparison to frequency re-use
 - ad hoc networks: comparison to graph coloring
 - extensions to MIMO
- Conclusion
As we all know, wireless communication systems are characterized by

1. broadcast during transmission
2. interference during reception
3. random fading
4. path-loss
5. mobility and time-varying channel conditions
6. time-varying traffic patterns
As we all know, wireless communication systems are characterized by:

1. broadcast during transmission
2. interference during reception
3. random fading
4. path-loss
5. mobility and time-varying channel conditions
6. time-varying traffic patterns

All have been successfully exploited in practical systems (perhaps) with the exception of *interference*.
Interference Channels

\[y_i = h_{ii}x_i + \sum_{j \neq i} h_{ij}x_j + z_j, \quad i = 1 \ldots, n \]

- capacity is, by and large, unknown
Interference Channels

\[y_i = h_{ii}x_i + \sum_{j \neq i} h_{ij}x_j + z_j, \quad i = 1 \ldots, n \]

- capacity is, by and large, unknown

Focus, instead, on degrees-of-freedom:

\[\text{DoF} = \lim_{\text{SNR} \to \infty} \frac{C_{\text{sum}}(\text{SNR})}{\log \text{SNR}}. \]
\[\text{DoF} = \lim_{\text{SNR} \to \infty} \frac{C_{\text{sum}}(\text{SNR})}{\log \text{SNR}}. \]
Interference Channels

$$\text{DoF} = \lim_{\text{SNR} \to \infty} \frac{C_{\text{sum}}(\text{SNR})}{\log \text{SNR}}.$$

Pros:
- considerably simplifies the analysis
- can lead to physical insight

Cons:
- may not "well reflect" actual performance at practical SNRs
Interference Channels

\[
\text{DoF} = \lim_{\text{SNR} \to \infty} \frac{C_{\text{sum}}(\text{SNR})}{\log \text{SNR}}.
\]

- **Pros:**
 - considerably simplifies the analysis
 - can lead to physical insight

- **Cons:**
 - may not "well reflect" actual performance at practical SNRs
Interference Alignment (Cadambe and Jafar, 2008)

Assume the channel coefficients change over time:

\[y_i(t) = h_{ii}(t)x_i(t) + \sum_{j \neq i} h_{ij}(t)x_j(t) + z_i(t) \]

Consider \(T \) channel uses:

\[
\begin{bmatrix}
 y_i(1) \\
 \vdots \\
 y_i(T)
\end{bmatrix} =
\begin{bmatrix}
 h_{ii}(1) \\
 \vdots \\
 h_{ii}(T)
\end{bmatrix}
\begin{bmatrix}
 x_i(1) \\
 \vdots \\
 x_i(T)
\end{bmatrix} +
\begin{bmatrix}
 h_{ij}(1) \\
 \vdots \\
 h_{ij}(T)
\end{bmatrix}
\begin{bmatrix}
 x_j(1) \\
 \vdots \\
 x_j(T)
\end{bmatrix} +
\begin{bmatrix}
 z_i(1) \\
 \vdots \\
 z_i(T)
\end{bmatrix}
\]
Interference Alignment (Cadambe and Jafar, 2008)

- Assume the channel coefficients change over time:
 \[y_i(t) = h_{ii}(t)x_i(t) + \sum_{j \neq i} h_{ij}(t)x_j(t) + z_j(t) \]
Interference Alignment (Cadambe and Jafar, 2008)

- Assume the channel coefficients change over time:
 \[y_i(t) = h_{ii}(t)x_i(t) + \sum_{j \neq i} h_{ij}(t)x_j(t) + z_j(t) \]

- Consider \(T \) channel uses:

\[
\begin{bmatrix}
y_i(1) \\
\vdots \\
y_i(T)
\end{bmatrix}
= \underbrace{
\begin{bmatrix}
h_{ii}(1) \\
\vdots \\
h_{ii}(T)
\end{bmatrix}
\begin{bmatrix}
x_i(1) \\
\vdots \\
x_i(T)
\end{bmatrix}
+ \sum_{j \neq i}
\underbrace{
\begin{bmatrix}
h_{ij}(1) \\
\vdots \\
h_{ij}(T)
\end{bmatrix}
\begin{bmatrix}
x_j(1) \\
\vdots \\
x_j(T)
\end{bmatrix}
+ \underbrace{
\begin{bmatrix}
z_i(1) \\
\vdots \\
z_i(T)
\end{bmatrix}
\end{bmatrix}
\]
Interference Alignment (Cadambe and Jafar, 2008)

\[Y_i = H_{ii}X_i + \sum_{j \neq i} H_{ij}X_j + Z_i. \]
Interference Alignment (Cadambe and Jafar, 2008)

\[Y_i = H_{ii}X_i + \sum_{j \neq i} H_{ij}X_j + Z_i. \]

Let us assume each transmitter \(j \) sends \(m \) information symbols \(S_j \) across the \(T \) channel uses:

\[X_j = V_j S_j, \]

where \(V_j \in \mathbb{C}^{T \times m} \) represents the precoding matrix.
Interference Alignment (Cadambe and Jafar, 2008)

\[Y_i = H_{ii}X_i + \sum_{j \neq i} H_{ij}X_j + Z_i. \]

Let us assume each transmitter \(j \) sends \(m \) information symbols \(S_j \) across the \(T \) channel uses:

\[X_j = V_jS_j, \]

where \(V_j \in \mathbb{C}^{T \times m} \) represents the precoding matrix. Note that the \(i \)-th interference term \(\sum_{j \neq i} H_{ij}V_jS_j \) lives in the range space of the matrix

\[
\left[\begin{array}{cccc}
H_{i1}V_1 & \ldots & H_{i,i-1}V_{i-1} & H_{i,i+1}V_{i+1} & \ldots & H_{in}V_n
\end{array}\right]_{T \times (n-1)m}.
\]
Interference Alignment (Cadambe and Jafar, 2008)

If we can find precoding matrices $V_i \in \mathbb{C}^{T \times m}$ and decoding matrices $U_i \in \mathbb{C}^{m \times T}$ such that

1. $\text{rank}(U_i H_{ii} V_i) = m$

2. $U_i \begin{bmatrix} H_{i1} V_1 & \ldots & H_{i,i-1} V_{i-1} & H_{i,i+1} V_{i+1} & \ldots & H_{in} V_n \end{bmatrix} = 0$

for all $i = 1, \ldots, n$, then each user can send m symbols interference free across T channel uses! (Thus, $\text{DoF} = m$.)
If we can find precoding matrices $V_i \in \mathbb{C}^{T \times m}$ and decoding matrices $U_i \in \mathbb{C}^{m \times T}$ such that

1. $\text{rank}(U_i H_{ii} V_i) = m$
2. $U_i \left[\begin{array}{cccc} H_{i1} V_1 & \ldots & H_{i,i-1} V_{i-1} & H_{i,i+1} V_{i+1} & \ldots & H_{in} V_n \end{array} \right] = 0$

for all $i = 1, \ldots, n$, then each user can send m symbols interference free across T channel uses! (Thus, $\text{DoF} = m$.)

In other words, the interference has *aligned* onto a $T - m$ dimensional subspace at each receiver.
Interference Alignment (Cadambe and Jafar, 2008)

If we can find precoding matrices $V_i \in \mathbb{C}^{T \times m}$ and decoding matrices $U_i \in \mathbb{C}^{m \times T}$ such that

1. $\text{rank}(U_i H_{ii} V_i) = m$
2. $U_i \left[H_{i1} V_1 \ldots H_{i,i-1} V_{i-1} H_{i,i+1} V_{i+1} \ldots H_{in} V_n \right] = 0$

for all $i = 1, \ldots, n$, then each user can send m symbols interference free across T channel uses! (Thus, $\text{DoF} = m$.)

In other words, the interference has aligned onto a $T - m$ dimensional subspace at each receiver.

When $T = n$, $m = 1$ is trivially achieved by time sharing. ($\text{DoF} = 1.$)
Interference Alignment (Cadambe and Jafar, 2008)

1. \[\text{rank}(U_i H_{ii} V_i) = m \]
2. \[U_i \begin{bmatrix} H_{i1} V_1 & \ldots & H_{i,i-1} V_{i-1} & H_{i,i+1} V_{i+1} & \ldots & H_{in} V_n \end{bmatrix} = 0 \]

But can we do better than \(m = 1 \)?
Interference Alignment (Cadambe and Jafar, 2008)

1. \(\text{rank}(U_i H_{ii} V_i) = m \)

2. \(U_i \begin{bmatrix} H_{i1} V_1 & \cdots & H_{i,i-1} V_{i-1} & H_{i,i+1} V_{i+1} & \cdots & H_{in} V_n \end{bmatrix} = 0 \)

But can we do better than \(m = 1 \)?

According to Cadambe and Jafar, if the diagonal \(H_{ij} \) are time-varying and generic, then as \(T \to \infty \), \(m = \frac{T}{2} \) is almost surely asymptotically achievable.
Interference Alignment (Cadambe and Jafar, 2008)

1. \(\text{rank}(U_i H_{ii} V_i) = m \)

2. \(U_i \begin{bmatrix} H_{i1} V_1 & \ldots & H_{i,i-1} V_{i-1} & H_{i,i+1} V_{i+1} & \ldots & H_{in} V_n \end{bmatrix} = 0 \)

But can we do better than \(m = 1 \)?

According to Cadambe and Jafar, if the diagonal \(H_{ij} \) are time-varying and generic, then as \(T \to \infty \), \(m = \frac{T}{2} \) is almost surely asymptotically achievable.

This means \(\text{DoF} = \frac{n}{2} \) (i.e., everyone gets half the cake).
Interference Alignment (Cadambe and Jafar, 2008)

1. \(\text{rank}(U_i H_{ii} V_i) = m \)

2. \(U_i \left[\begin{array}{cccc} H_{i1} V_1 & \cdots & H_{i,i-1} V_{i-1} & H_{i,i+1} V_{i+1} & \cdots & H_{in} V_n \end{array} \right] = 0 \)

But can we do better than \(m = 1 \)?

According to Cadambe and Jafar, if the diagonal \(H_{ij} \) are time-varying and generic, then as \(T \to \infty \), \(m = \frac{T}{2} \) is almost surely asymptotically achievable.

This means \(\text{DoF} = \frac{n}{2} \) (i.e., everyone gets half the cake).

Cadambe and Jafar’s argument relies heavily on the fact that the \(H_{ij} \) are diagonal. They give explicit constructions for the precoding matrices when \(T = O(2^n) \).
Remarks

This is a remarkable result.
This is a remarkable result.

- requires very long block lengths (double exponential in the block length)

This is clearly not practically feasible. (But it does suggest what to shoot for in practical systems.)
Remarks

This is a remarkable result.

- requires very long block lengths (double exponential in the block length)
- requires the channels to vary generically over time
Remarks

This is a remarkable result.

- requires very long block lengths (double exponential in the block length)
- requires the channels to vary generically over time
- requires full knowledge of the channel coefficients of *every link* in the network, at *each transmitter* and for *all times*
 - the V_i depend on all the H_{jk}
Remarks

This is a remarkable result.

- requires very long block lengths (double exponential in the block length)
- requires the channels to vary generically over time
- requires full knowledge of the channel coefficients of every link in the network, at each transmitter and for all times!
 - the V_i depend on all the H_{jk}

This is clearly not practically feasible.
Remarks

This is a remarkable result.

- requires very long block lengths (double exponential in the block length)
- requires the channels to vary generically over time
- requires full knowledge of the channel coefficients of *every link* in the network, at *each transmitter* and for *all times*!
 - the V_i depend on all the H_{jk}

This is clearly not practically feasible. (But it does suggest what to shoot for in practical systems.)
Ergodic Interference Alignment (Nazer et al, 2009)

Assuming the H_{ij} vary in an ergodic fashion and that their distributions are symmetric, one can achieve $\text{DoF} = \frac{n}{2}$ without non-causal CSIT:

1. At time $t = 1$ each transmitter i knows all the current channel coefficients $H_{kl}(1)$ and transmits the signal $x_i(1)$.

2. At some future time t, we will encounter channel coefficients such that $H_{kl}(t) = -H_{kl}(1)$, for all $k \neq l$.

3. At such a time t, each transmitter i transmits the signal $x_i(t) = x_i(1)$.

4. Each receiver i adds its received signals $y_i(1)$ and $y_i(t)$ and thereby perfectly eliminates the interference.

5. Thus each symbol is transmitted interference-free over two channel uses and $\text{DoF} = \frac{n}{2}$ is achieved!

This is not practical, either. (To put it mildly...) Nonetheless, there is a growing literature on attempting to do interference alignment with more reasonable CSIT assumptions. (The jury is still out on what the gains are.)
Ergodic Interference Alignment (Nazer et al, 2009)

Assuming the H_{ij} vary in an ergodic fashion and that their distributions are symmetric, one can achieve $\text{DoF} = \frac{n}{2}$ without non-causal CSIT:

1. at time $t = 1$ each transmitter i knows all the current channel coefficients $H_{kl}(1)$ and transmits the signal $x_i(1)$.

2. at some future time t, we will encounter channel coefficients such that $H_{kl}(t) = -H_{kl}(1)$, for all $k \neq l$.

3. at such a time t, each transmitter i transmits the signal $x_i(t) = x_i(1)$.

4. each receiver i adds its received signals $y_i(1)$ and $y_i(t)$ and thereby perfectly eliminates the interference.

5. thus each symbol is transmitted interference-free over two channel uses and $\text{DoF} = \frac{n}{2}$ is achieved!

This is not practical, either. (To put it mildly....) Nonetheless, there is a growing literature on attempting to do interference alignment with more reasonable CSIT assumptions. (The jury is still out on what the gains are.)
Ergodic Interference Alignment (Nazer et al, 2009)

Assuming the H_{ij} vary in an ergodic fashion and that their distributions are symmetric, one can achieve $\text{DoF} = \frac{n}{2}$ without non-causal CSIT:

1. at time $t = 1$ each transmitter i knows all the current channel coefficients $H_{kl}(1)$ and transmits the signal $x_i(1)$.
2. at some future time t, we will encounter channel coefficients such that $H_{kl}(t) = -H_{kl}(1)$, for all $k \neq l$.

This is not practical, either. (To put it mildly....) Nonetheless, there is a growing literature on attempting to do interference alignment with more reasonable CSIT assumptions. (The jury is still out on what the gains are.)
Ergodic Interference Alignment (Nazer et al, 2009)

Assuming the H_{ij} vary in an ergodic fashion and that their distributions are symmetric, one can achieve $\text{DoF} = \frac{n}{2}$ without non-causal CSIT:

1. at time $t = 1$ each transmitter i knows all the current channel coefficients $H_{kl}(1)$ and transmits the signal $x_i(1)$.
2. at some future time t, we will encounter channel coefficients such that $H_{kl}(t) = -H_{kl}(1)$, for all $k \neq l$.
3. at such a time t, each transmitter i transmits the signal $x_i(t) = x_i(1)$.
Assuming the H_{ij} vary in an ergodic fashion and that their distributions are symmetric, one can achieve $\textbf{DoF} = \frac{n}{2}$ without non-causal CSIT:

1. at time $t = 1$ each transmitter i knows all the current channel coefficients $H_{kl}(1)$ and transmits the signal $x_i(1)$.
2. at some future time t, we will encounter channel coefficients such that $H_{kl}(t) = -H_{kl}(1)$, for all $k \neq l$.
3. at such a time t, each transmitter i transmits the signal $x_i(t) = x_i(1)$.
4. each receiver i adds its received signals $y_i(1)$ and $y_i(t)$ and thereby perfectly eliminates the interference.
Assuming the H_{ij} vary in an ergodic fashion and that their distributions are symmetric, one can achieve $\text{DoF} = \frac{n}{2}$ without non-causal CSIT:

1. At time $t=1$ each transmitter i knows all the current channel coefficients $H_{kl}(1)$ and transmits the signal $x_i(1)$.
2. At some future time t, we will encounter channel coefficients such that $H_{kl}(t) = -H_{kl}(1)$, for all $k \neq l$.
3. At such a time t, each transmitter i transmits the signal $x_i(t) = x_i(1)$.
4. Each receiver i adds its received signals $y_i(1)$ and $y_i(t)$ and thereby perfectly eliminates the interference.
5. Thus each symbol is transmitted interference-free over two channel uses and $\text{DoF} = \frac{n}{2}$ is achieved!
Assuming the H_{ij} vary in an ergodic fashion and that their distributions are symmetric, one can achieve $\text{DoF} = \frac{n}{2}$ without non-causal CSIT:

1. at time $t = 1$ each transmitter i knows all the current channel coefficients $H_{kl}(1)$ and transmits the signal $x_i(1)$.
2. at some future time t, we will encounter channel coefficients such that $H_{kl}(t) = -H_{kl}(1)$, for all $k \neq l$.
3. at such a time t, each transmitter i transmits the signal $x_i(t) = x_i(1)$.
4. each receiver i adds its received signals $y_i(1)$ and $y_i(t)$ and thereby perfectly eliminates the interference.
5. thus each symbol is transmitted interference-free over two channel uses and $\text{DoF} = \frac{n}{2}$ is achieved!

This is not practical, either. (To put it mildly....)
Ergodic Interference Alignment (Nazer et al, 2009)

Assuming the H_{ij} vary in an ergodic fashion and that their distributions are symmetric, one can achieve $\text{DoF} = \frac{n}{2}$ without non-causal CSIT:

1. at time $t = 1$ each transmitter i knows all the current channel coefficients $H_{kl}(1)$ and transmits the signal $x_i(1)$.
2. at some future time t, we will encounter channel coefficients such that $H_{kl}(t) = -H_{kl}(1)$, for all $k \neq l$.
3. at such a time t, each transmitter i transmits the signal $x_i(t) = x_i(1)$.
4. each receiver i adds its received signals $y_i(1)$ and $y_i(t)$ and thereby perfectly eliminates the interference.
5. thus each symbol is transmitted interference-free over two channel uses and $\text{DoF} = \frac{n}{2}$ is achieved!

This is not practical, either. (To put it mildly....)
Nonetheless, there is a growing literature on attempting to do interference alignment with more reasonable CSIT assumptions. (The jury is still out on what the gains are.)
Topological Interference Management (Jafar, 2013)

Exploit IA principles under realistic assumptions on CSIT
Knowledge of only the interference pattern at the transmitters
Tight connection to the index coding problem [Birk & Kol'98]

Example:

\begin{align*}
 & t_1 & t_2 & t_3 & t_4 & t_5 \\
 & r_1 & r_2 & r_3 & r_4 & r_5 \\
\end{align*}

(a) Interference pattern

\begin{align*}
 & 2 & 6 & 6 & 6 & 6 \\
 & 6 & 4 & 1 & \leftrightarrow & 00 \\
 & \leftrightarrow & 100 & \leftrightarrow & 0 & \leftrightarrow & 1 \\
 & 0 & \leftrightarrow & 1 & \leftrightarrow & 0 \\
 & 0 & \leftrightarrow & \leftrightarrow & 10 & \leftrightarrow & 0 \\
 & \leftrightarrow & 0 & \leftrightarrow & \leftrightarrow & 1 \\
 & 3 & 7 & 7 & 7 & 7 \\
 & 7 & 5 & & & \\
\end{align*}

(b) Matrix entry pattern
Topological Interference Management (Jafar, 2013)

- Exploit IA principles under realistic assumptions on CSIT
Topological Interference Management (Jafar, 2013)

- Exploit IA principles under realistic assumptions on CSIT
- Knowledge of only the *interference pattern* at the transmitters
Topological Interference Management (Jafar, 2013)

- Exploit IA principles under realistic assumptions on CSIT
- Knowledge of only the *interference pattern* at the transmitters
- Tight connection to the *index coding* problem [Birk & Kol’98]
Topological Interference Management (Jafar, 2013)

- Exploit IA principles under realistic assumptions on CSIT
- Knowledge of only the *interference pattern* at the transmitters
- Tight connection to the *index coding* problem [Birk & Kol’98]

Example:

(a) Interference pattern

(b) Matrix entry pattern
Note that the following sets of nodes can transmit interference-free:
\{1, 2\}, \{3, 4\}, \{5\}.
For example, \{1, 2\} can transmit in the first time slot, \{3, 4\} in the second, and \{5\} in the third. Thus,
\[\text{DoF} = 1 + 3 = 4. \]
Interference Avoidance (Graph Coloring)

Note that the following sets of nodes can transmit interference-free:

\{1, 2\}, \{3, 4\}, \{5\}.
Interference Avoidance (Graph Coloring)

Note that the following sets of nodes can transmit interference-free:

\[\{1, 2\} \quad , \quad \{3, 4\} \quad , \quad \{5\} \]

For example, \(\{1, 2\}\) can transmit in the first time slot, \(\{3, 4\}\) in the second, and \(\{5\}\) in the third. Thus, \(DoF = \frac{1}{3}\).
Interference Avoidance (Graph Coloring)

Note that the following sets of nodes can transmit interference-free:

\[\{1, 2\}, \{3, 4\}, \{5\}. \]

For example, \(\{1, 2\} \) can transmit in the first time slot, \(\{3, 4\} \) in the second, and \(\{5\} \) in the third. Thus, \(\text{DoF} = \frac{1}{3} \). Note that

\[
\begin{bmatrix}
1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}
= \begin{bmatrix}
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}.
\]
Let each transmitter transmit one signal over two channel uses each:
\[X_1 = \begin{bmatrix} s_1 & 0 \end{bmatrix}, \quad X_2 = \begin{bmatrix} 0 & s_2 \end{bmatrix}, \quad X_3 = \begin{bmatrix} -s_3 & s_3 \end{bmatrix}, \quad X_4 = \begin{bmatrix} -s_4 & s_4 \end{bmatrix}, \quad X_5 = \begin{bmatrix} s_5 & 0 \end{bmatrix}. \]

\[Y_1, Y_3 \text{ and } Y_5 \] therefore are
\[Y_1 = \begin{bmatrix} s_1 & 0 \end{bmatrix} h_{11} + \begin{bmatrix} -s_3 & s_3 \end{bmatrix} h_{13} + \begin{bmatrix} -s_4 & s_4 \end{bmatrix} h_{14} + Z_1 \]
\[Y_3 = \begin{bmatrix} -s_3 & s_3 \end{bmatrix} h_{33} + \begin{bmatrix} s_1 & 0 \end{bmatrix} h_{31} + \begin{bmatrix} s_5 & 0 \end{bmatrix} h_{35} + Z_3 \]
\[Y_5 = \begin{bmatrix} s_5 & 0 \end{bmatrix} h_{55} + \begin{bmatrix} 0 & s_2 \end{bmatrix} h_{52} + Z_5. \]
Let each transmitter transmit one signal over two channel uses each:

\[X_1 = \begin{bmatrix} s_1 \\ 0 \end{bmatrix}, \quad X_2 = \begin{bmatrix} 0 \\ s_2 \end{bmatrix}, \quad X_3 = \begin{bmatrix} -s_3 \\ s_3 \end{bmatrix}, \quad X_4 = \begin{bmatrix} -s_4 \\ s_4 \end{bmatrix}, \quad X_5 = \begin{bmatrix} s_5 \\ 0 \end{bmatrix}. \]
Let each transmitter transmit one signal over two channel uses each:

\[X_1 = \begin{bmatrix} s_1 \\ 0 \end{bmatrix}, \quad X_2 = \begin{bmatrix} 0 \\ s_2 \end{bmatrix}, \quad X_3 = \begin{bmatrix} -s_3 \\ s_3 \end{bmatrix}, \quad X_4 = \begin{bmatrix} -s_4 \\ s_4 \end{bmatrix}, \quad X_5 = \begin{bmatrix} 0 \\ s_5 \end{bmatrix}. \]

\[Y_1, \ Y_3 \text{ and } Y_5 \text{ therefore are} \]

\[Y_1 = \begin{bmatrix} s_1 \\ 0 \end{bmatrix} h_{11} + \begin{bmatrix} -s_3 \\ s_3 \end{bmatrix} h_{13} + \begin{bmatrix} -s_4 \\ s_4 \end{bmatrix} h_{14} + Z_1 \]

\[Y_3 = \begin{bmatrix} -s_3 \\ s_3 \end{bmatrix} h_{33} + \begin{bmatrix} s_1 \\ 0 \end{bmatrix} h_{31} + \begin{bmatrix} 0 \\ s_5 \end{bmatrix} h_{35} + Z_3 \]

\[Y_5 = \begin{bmatrix} 0 \\ s_2 \end{bmatrix} h_{52} + Z_5 \]
Topological Interference Alignment

\[Y_1 = \begin{bmatrix} s_1 \\ 0 \end{bmatrix} h_{11} + \begin{bmatrix} -s_3 \\ s_3 \end{bmatrix} h_{13} + \begin{bmatrix} -s_4 \\ s_4 \end{bmatrix} h_{14} + Z_1 \]
\[Y_3 = \begin{bmatrix} -s_3 \\ s_3 \end{bmatrix} h_{33} + \begin{bmatrix} s_1 \\ 0 \end{bmatrix} h_{31} + \begin{bmatrix} s_5 \\ 0 \end{bmatrix} h_{35} + Z_3 \]
\[Y_5 = \begin{bmatrix} s_5 \\ 0 \end{bmatrix} h_{55} + \begin{bmatrix} 0 \\ s_2 \end{bmatrix} h_{52} + Z_5 \]
Topological Interference Alignment

\[Y_1 = \begin{bmatrix} s_1 \\ 0 \end{bmatrix} h_{11} + \begin{bmatrix} -s_3 \\ s_3 \end{bmatrix} h_{13} + \begin{bmatrix} -s_4 \\ s_4 \end{bmatrix} h_{14} + Z_1 \]

\[Y_3 = \begin{bmatrix} -s_3 \\ s_3 \end{bmatrix} h_{33} + \begin{bmatrix} s_1 \\ 0 \end{bmatrix} h_{31} + \begin{bmatrix} s_5 \\ 0 \end{bmatrix} h_{35} + Z_3 \]

\[Y_5 = \begin{bmatrix} s_5 \\ 0 \end{bmatrix} h_{55} + \begin{bmatrix} 0 \\ s_2 \end{bmatrix} h_{52} + Z_5 \]

Note that \(\begin{bmatrix} 1 & 1 \end{bmatrix} Y_1 \), \(\begin{bmatrix} 0 & 1 \end{bmatrix} Y_3 \) and \(\begin{bmatrix} 1 & 0 \end{bmatrix} Y_5 \) are interference-free (Similarly, for \(Y_2 \) and \(Y_4 \)).
Topological Interference Alignment

\[
Y_1 = \begin{bmatrix} s_1 \\ 0 \end{bmatrix} h_{11} + \begin{bmatrix} -s_3 \\ s_3 \end{bmatrix} h_{13} + \begin{bmatrix} -s_4 \\ s_4 \end{bmatrix} h_{14} + Z_1
\]

\[
Y_3 = \begin{bmatrix} -s_3 \\ s_3 \end{bmatrix} h_{33} + \begin{bmatrix} s_1 \\ 0 \end{bmatrix} h_{31} + \begin{bmatrix} s_5 \\ 0 \end{bmatrix} h_{35} + Z_3
\]

\[
Y_5 = \begin{bmatrix} s_5 \\ 0 \end{bmatrix} h_{55} + \begin{bmatrix} 0 \\ s_2 \end{bmatrix} h_{52} + Z_5
\]

Note that \([1 \ 1]\) \(Y_1\), \([0 \ 1]\) \(Y_3\) and \([1 \ 0]\) \(Y_5\) are interference-free. (Similarly, for \(Y_2\) and \(Y_4\)). Thus, \(\text{DoF} = \frac{1}{2}\).
Topological Interference Alignment

Note that

\[
\begin{pmatrix}
1 & 1 \\
1 & 1 \\
0 & 1 \\
0 & 1 \\
1 & 0 \\
\end{pmatrix}
\begin{pmatrix}
1 \\
0 \\
-1 \\
-1 \\
1 \\
\end{pmatrix}
=
\begin{pmatrix}
1 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 \\
1 & 0 \\
\end{pmatrix}
\]
Topological Interference Alignment

Note that

\[
\begin{bmatrix}
1 & 1 \\
1 & 1 \\
0 & 1 \\
0 & 1 \\
1 & 0 \\
\end{bmatrix}
\begin{bmatrix}
1 & 0 & -1 & -1 & 1 \\
0 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 \\
1 & 0 & -1 & -1 & 1 \\
\end{bmatrix}
=
\begin{bmatrix}
1 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 \\
1 & 0 & -1 & -1 & 1 \\
\end{bmatrix}
\]
Key Concept

S: set of all pairs (i, j) such that receiver i has interference from transmitter j

$$A_{ij} = \begin{cases}
1 & \text{if } i = j, \\
0 & \text{if } (i, j) \in S \& i \neq j, \\
\times & \text{otherwise}.
\end{cases}$$
Key Concept

S: set of all pairs (i, j) such that receiver i has interference from transmitter j

$$A_{ij} = \begin{cases}
1 & \text{if } i = j, \\
0 & \text{if } (i, j) \in S \text{ & } i \neq j, \\
\times & \text{otherwise.}
\end{cases}$$

Suppose we have a rank r completion $A = UV$
Key Concept

S: set of all pairs (i, j) such that receiver i has interference from transmitter j

$$A_{ij} = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } (i, j) \in S \& i \neq j, \\ \times & \text{otherwise}. \end{cases}$$

Suppose we have a rank r completion $A = UV$

Over r time slots:

- transmitter i transmits v_is_i, where v_i is the i-th column of V
Key Concept

S: set of all pairs (i,j) such that receiver i has interference from transmitter j

$$A_{ij} = \begin{cases}
1 & \text{if } i = j, \\
0 & \text{if } (i,j) \in S \& i \neq j, \\
\times & \text{otherwise.}
\end{cases}$$

Suppose we have a rank r completion $A = UV$

Over r time slots:

- transmitter i transmits $\mathbf{v}_i s_i$, where \mathbf{v}_i is the i-th column of V
- receiver i receives $\mathbf{v}_i h_{ii} s_i + \sum_{j,(i,j) \in S} \mathbf{v}_j h_{ij} s_j + z_i$
Key Concept

S: set of all pairs (i, j) such that receiver i has interference from transmitter j

\[
A_{ij} = \begin{cases}
1 & \text{if } i = j, \\
0 & \text{if } (i, j) \in S \text{ and } i \neq j, \\
\times & \text{otherwise.}
\end{cases}
\]

Suppose we have a rank r completion $A = UV$

Over r time slots:

- transmitter i transmits v_is_i, where v_i is the i-th column of V
- receiver i receives $v_i h_{ii}s_i + \sum_{j,(i,j) \in S} v_j h_{ij}s_j + z_i$
- receiver decodes s_i by: $u_i \left(v_i h_{ii}s_i + \sum_{j,(i,j) \in S} v_j h_{ij}s_j + z_i \right)$
Key Concept

S: set of all pairs (i, j) such that receiver i has interference from transmitter j

$$A_{ij} = \begin{cases}
1 & \text{if } i = j, \\
0 & \text{if } (i, j) \in S \& i \neq j, \\
\times & \text{otherwise.}
\end{cases}$$

Suppose we have a rank r completion $A = UV$

Over r time slots:

- transmitter i transmits $v_i s_i$, where v_i is the i-th column of V
- receiver i receives $v_i h_{ii} s_i + \sum_{j,(i,j) \in S} v_j h_{ij} s_j + z_i$
- receiver decodes s_i by: $u_i \left(v_i h_{ii} s_i + \sum_{j,(i,j) \in S} v_j h_{ij} s_j + z_i \right) = u_i v_i h_{ii} s_i + \sum_{j,(i,j) \in S} (u_i v_j) h_{ij} s_j + u_i z_i = u_i v_i h_{ii} s_i + u_i z_i$,
 where u_i is the i-th row of U
Connection to Low Rank Matrix Completion

\[\text{DoF} = \frac{1}{r} \]
Connection to Low Rank Matrix Completion

\[\text{DoF} = \frac{1}{r} \]

Challenges:
Connection to Low Rank Matrix Completion

\[\text{DoF} = \frac{1}{r} \]

Challenges:

- What is the minimum possible \(r \) for a given interference pattern?
Connection to Low Rank Matrix Completion

\[\text{DoF} = \frac{1}{r} \]

Challenges:

- What is the minimum possible \(r \) for a given interference pattern?
- For a given \(r \), how to find such matrices (if they exist)?
Connection to Low Rank Matrix Completion

$$\text{DoF} = \frac{1}{r}$$

Challenges:
- What is the minimum possible r for a given interference pattern?
- For a given r, how to find such matrices (if they exist)?

Low Rank Matrix Completion Problem:
Connection to Low Rank Matrix Completion

\[DoF = \frac{1}{r} \]

Challenges:
- What is the minimum possible \(r \) for a given interference pattern?
- For a given \(r \), how to find such matrices (if they exist)?

Low Rank Matrix Completion Problem:

\[
\text{minimize} \quad \text{rank}(A) \\
\text{subject to} \quad A_S = I
\]
Connection to Low Rank Matrix Completion

\[\text{DoF} = \frac{1}{r} \]

Challenges:
- What is the minimum possible \(r \) for a given interference pattern?
- For a given \(r \), how to find such matrices (if they exist)?

Low Rank Matrix Completion Problem:

\[
\begin{align*}
\text{minimize} & \quad \text{rank}(A) \\
\text{subject to} & \quad A_S = I
\end{align*}
\]

Literature:
- Lots of attention in compressed-sensing and machine learning communities [Fazel, Recht, Parrilo, Candes, Montanari, Sanghavi, Oymak-Hassibi, etc.]
Alternating Projection Method

Instead of searching for the optimal r, seek a completion for a fixed r:

Matrix Completion Problem: find A subject to $A S = I$

$\text{rank}(A) = r$

The matrix A should lie in the sets:

(S1) Rank r matrices
(S2) Matrices with the entry pattern \ldots

Observation: It is very easy to project any given matrix onto the sets (S1) and (S2) individually.
Alternating Projection Method

Instead of searching for the optimal r, seek a completion for a \textit{fixed} r:

\textbf{Matrix Completion Problem:}

\begin{align*}
\text{find} & \quad A \\
\text{subject to} & \quad A_S = I \\
& \quad \text{rank}(A) = r
\end{align*}
Alternating Projection Method

Instead of searching for the optimal r, seek a completion for a *fixed* r:

Matrix Completion Problem:

\[
\text{find } \quad A \\
\text{subject to } \quad A_S = I \\
\quad \text{rank}(A) = r
\]

The matrix A should lie in the sets:

- **(S1)** Rank r matrices
- **(S2)** Matrices with the entry pattern $[.]_S = I$
Alternating Projection Method

Instead of searching for the optimal r, seek a completion for a fixed r:

Matrix Completion Problem:

\[
\begin{align*}
\text{find} & \quad A \\
\text{subject to} & \quad A_S = I \\
& \quad \text{rank}(A) = r
\end{align*}
\]

The matrix A should lie in the sets:

(S1) Rank r matrices

(S2) Matrices with the entry pattern $[.]_S = I$

Observation: It is very easy to project any given matrix onto the sets (S1) and (S2) individually
Algorithm 1 Proposed Algorithm: Alternating Projection Method

Let A^0 be a random matrix. From $i = 0$ until convergence:

- Project A^i onto (S1): $B^i = \text{svd}(A^i, r)$
- Project B^i onto (S2): $A^{i+1} = [B^i]_{S_c} + I$

Descent method:

- B^{i+1} is the best rank r approximation of $[B^i]_{S_c} + I$

\[
\|B^{i+1} - ([B^i]_{S_c} + I)\|_F^2 \leq \|B^i - ([B^i]_{S_c} + I)\|_F^2
\]

\[
\Rightarrow \|B^i_{S_c} + B^{i+1} - B^i_{S_c}\|_F^2 + \|B^{i+1} - I\|_F^2 \leq \|B^i - I\|_F^2
\]

Convergence to fixed points:

\[
B = \text{svd}(B_{S_c} + I, r)
\]
Algorithm 2 AltMin

Inputs: n, r, S, P_t. Initialization: $U_0 \in \mathbb{R}^{n \times r}$ random.

From $i = 0$ until convergence,

- Solve for V_i:

 $$\text{minimize} \quad \| (U_{i-1} V_i^T - I)_S \|$$

- Solve for U_i:

 $$\text{minimize} \quad \| (U_i V_i^T - I)_S \|$$

If algorithm converges to V_N and U_N, output V_N and U_N.

S includes the set of indices where $A_{ij} = 0$ and the diagonal.
Numerical Experiments

$$M = \begin{bmatrix}
1 & -2.09 & 0 & 0 & 0.81 \\
-0.47 & 1 & 0 & 0 & -0.39 \\
0 & 1.73 & 1 & 0.69 & 0 \\
0 & 2.52 & 1.45 & 1 & 0 \\
1.23 & 0 & 1.49 & 1.03 & 1 \\
\end{bmatrix} = \begin{bmatrix}
0.93 & 0.89 \\
-0.44 & -0.42 \\
-1.00 & 0.17 \\
-1.46 & 0.25 \\
-0.35 & 1.35 \\
\end{bmatrix}^T \begin{bmatrix}
0.26 & 0.96 \\
-1.80 & -0.47 \\
-0.84 & 0.89 \\
-0.58 & 0.61 \\
0.13 & 0.77 \\
\end{bmatrix}$$
Numerical Experiments

- Alternating Projection method recovers the optimal rank for all the index coding examples in [Birk & Kol’98] and all the TIM problems in [Jafar’13]

\[
M = \begin{bmatrix}
1 & -2.09 & 0 & 0 & 0.81 \\
-0.47 & 1 & 0 & 0 & -0.39 \\
0 & 1.73 & 1 & 0.69 & 0 \\
0 & 2.52 & 1.45 & 1 & 0 \\
1.23 & 0 & 1.49 & 1.03 & 1
\end{bmatrix}
\]

\[
= \begin{bmatrix}
0.93 & 0.89 \\
-0.44 & -0.42 \\
-1.00 & 0.17 \\
-1.46 & 0.25 \\
-0.35 & 1.35
\end{bmatrix}
\begin{bmatrix}
0.26 & 0.96 \\
-1.80 & -0.47 \\
-0.84 & 0.89 \\
-0.58 & 0.61 \\
0.13 & 0.77
\end{bmatrix}^T
\]
Alternating Projection method recovers the optimal rank for all the index coding examples in [Birk & Kol’98] and all the TIM problems in [Jafar’13].

However, we know from extensive simulations (on much larger problems) that the method does not always yield the optimal rank.
Numerical Experiments

- Alternating Projection method recovers the optimal rank for all the index coding examples in [Birk & Kol’98] and all the TIM problems in [Jafar’13]
- However, we know from extensive simulations (on much larger problems) that the method does not always yield the optimal rank—convergence analysis is still on-going
Towards Practical Wireless Interference Networks

The Alternating Projection method constitutes an efficient way to compute (or lower bound) the DoF of wireless interference networks – provides an opportunity to apply premises of IA under realistic assumptions on CSIT.

Challenges:
- How do DoF results translate to practical SNR?
- How is the capacity affected when you consider geometrically-placed transmitters and receivers, path-loss models, fading and put back in the real channel coefficients?
- How does TIM compare to the baseline, i.e., interference avoidance (frequency reuse, etc)?
Towards Practical Wireless Interference Networks

The Alternating Projection method constitutes an efficient way to compute (or lower bound) the DoF of wireless interference networks.
Towards Practical Wireless Interference Networks

The Alternating Projection method constitutes an *efficient* way to compute (or lower bound) the *DoF* of wireless interference networks

- provides an opportunity to apply premises of IA under realistic assumptions on CSIT
Towards Practical Wireless Interference Networks

The Alternating Projection method constitutes an efficient way to compute (or lower bound) the DoF of wireless interference networks

- provides an opportunity to apply premises of IA under realistic assumptions on CSIT

Challenges:

- How do DoF results translate to practical SNR?
The Alternating Projection method constitutes an efficient way to compute (or lower bound) the DoF of wireless interference networks. It provides an opportunity to apply premises of IA under realistic assumptions on CSIT.

Challenges:

- How do DoF results translate to practical SNR?
- How is the capacity affected when you consider geometrically-placed transmitters and receivers, path-loss models, fading and put back in the real channel coefficients?
Towards Practical Wireless Interference Networks

The Alternating Projection method constitutes an efficient way to compute (or lower bound) the DoF of wireless interference networks

- provides an opportunity to apply premises of IA under realistic assumptions on CSIT

Challenges:

- How do DoF results translate to practical SNR?
- How is the capacity affected when you consider geometrically-placed transmitters and receivers, path-loss models, fading and put back in the real channel coefficients?
- How does TIM compare to the baseline, i.e., *interference avoidance* (frequency reuse, etc)?
Hexagonal Grid: Setup

- N=8,18,24,32,50 cells.
- 6 users per cell,
- average SNR in each cell = 20db
- average INR from neighboring cell = 12db
- path loss model:
 \[h_{ij} \sim \mathcal{N}(0, \left(\frac{d_{ij}}{r_0}\right)^{-4.0}) \]

Methods

1. frequency reuse 3 yields \(\text{DoF} = \frac{1}{18} \)
2. with carefully-placed users, and no fading, Jafar exhibits an optimal \(\text{DoF} = \frac{1}{7} \) (257% improvement)
3. we will randomly place 6 users in each cell and will consider fading
Hexagonal Grid: Results

- DoF

<table>
<thead>
<tr>
<th></th>
<th>FreqReuse</th>
<th>Coloring</th>
<th>AltMin</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{DoF})</td>
<td>1/18</td>
<td>1/11</td>
<td>1/9</td>
</tr>
</tbody>
</table>

This is really bad. What is going on?
Hexagonal Grid: Results

- **DoF**

<table>
<thead>
<tr>
<th>DoF</th>
<th>FreqReuse</th>
<th>Coloring</th>
<th>AltMin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1/18</td>
<td>1/11</td>
<td>1/9</td>
</tr>
</tbody>
</table>

- **Sum Rate**

<table>
<thead>
<tr>
<th>N</th>
<th>FreqReuse</th>
<th>Coloring</th>
<th>AltMin</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>13.5302</td>
<td>14.7916</td>
<td>6.2415</td>
</tr>
<tr>
<td>18</td>
<td>23.3473</td>
<td>23.1307</td>
<td>13.0369</td>
</tr>
<tr>
<td>24</td>
<td>29.0311</td>
<td>29.2044</td>
<td>14.9266</td>
</tr>
<tr>
<td>32</td>
<td>41.2803</td>
<td>39.0702</td>
<td>22.3766</td>
</tr>
<tr>
<td>50</td>
<td>60.4578</td>
<td>62.7105</td>
<td>35.1663</td>
</tr>
</tbody>
</table>
Hexagonal Grid: Results

- **DoF**

<table>
<thead>
<tr>
<th></th>
<th>FreqReuse</th>
<th>Coloring</th>
<th>AltMin</th>
</tr>
</thead>
<tbody>
<tr>
<td>DoF</td>
<td>1/18</td>
<td>1/11</td>
<td>1/9</td>
</tr>
</tbody>
</table>

- **Sum Rate**

<table>
<thead>
<tr>
<th></th>
<th>FreqReuse</th>
<th>Coloring</th>
<th>AltMin</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N = 8$</td>
<td>13.5302</td>
<td>14.7916</td>
<td>6.2415</td>
</tr>
<tr>
<td>$N = 18$</td>
<td>23.3473</td>
<td>23.1307</td>
<td>13.0369</td>
</tr>
<tr>
<td>$N = 24$</td>
<td>29.0311</td>
<td>29.2044</td>
<td>14.9266</td>
</tr>
<tr>
<td>$N = 32$</td>
<td>41.2803</td>
<td>39.0702</td>
<td>22.3766</td>
</tr>
<tr>
<td>$N = 50$</td>
<td>60.4578</td>
<td>62.7105</td>
<td>35.1663</td>
</tr>
</tbody>
</table>

This is really bad. What is going on?
Let us Look at the Sum Rate

Transmitter i has signal s_i, $|s_i|^2 = 1$ and transmits $x_i = v_i s_i \in \mathbb{R}^r$. The power constraint per channel use is $E \|x_i\|^2 = P_t$, which translates to $\|v_i\|^2 = r P_t$.

At receiver i, $u_i y_i = u_i v_i h_{ii} s_i + n \sum_{j: A_{ij} \neq 0} u_i v_j \times u_i z_i$.

Therefore the sum rate is $C_{\text{sum}} = \sum_{i=1}^n 1 r \log \left(1 + \frac{|u_i v_i|^2}{\|u_i\|^2 \|v_i\|^2 \sigma^2 + \sum_{j: A_{ij} \neq 0} |u_i v_j|^2 \|u_i\|^2 \|v_j\|^2 r P_t \frac{1}{\|h_{ij}\|^2}} \right)$ or $C_{\text{sum}} = \sum_{i=1}^n 1 r \log \left(1 + \frac{|u_i v_i|^2}{\|u_i\|^2 \|v_i\|^2 r P_t} \frac{1}{\|h_{ii}\|^2} \right)$.
Let us Look at the Sum Rate

- Transmitter i has signal s_i, $E|s_i|^2 = 1$ and transmits $x_i = v_i s_i \in \mathcal{R}^r$.

The power constraint per channel use is $E \| x_i \|^2 = P_t$, which translates to $\| v_i \|^2 = r P_t$.

At receiver i,

$$u_i y_i = u_i v_i h_{ii} s_i + n \sum_{j: A_{ij} = 0} u_i v_j h_{ij} s_j + u_i z_i.$$

Therefore the sum rate is

$$C_{\text{sum}} = n \sum_{i=1}^1 \frac{1}{r} \log \left(1 + \frac{|u_i v_i|^2}{\| u_i \|^2 \| v_i \|^2} \sigma^2 + \sum_{j: A_{ij} = 0} \frac{|u_i v_j|^2}{\| u_i \|^2 \| v_j \|^2} r P_t \| h_{ij} \|^2 \right)$$

or

$$C_{\text{sum}} = n \sum_{i=1}^1 \frac{1}{r} \log \left(1 + \frac{|u_i v_i|^2}{\| u_i \|^2 \| v_i \|^2} \frac{1}{r \| v_i \|^2} \sigma^2 + \sum_{j: A_{ij} = 0} \frac{|u_i v_j|^2}{\| u_i \|^2 \| v_j \|^2} r P_t \| h_{ij} \|^2 \right).$$
Let us Look at the Sum Rate

- Transmitter i has signal s_i, $E|s_i|^2 = 1$ and transmits $x_i = v_i s_i \in \mathcal{R}^r$. The power constraint per channel use is $\frac{E\|x_i\|^2}{r} = P_t$, which translates to $\|v_i\|^2 = rP_t$.

Let us Look at the Sum Rate

- Transmitter i has signal s_i, $E|s_i|^2 = 1$ and transmits $x_i = v_is_i \in \mathcal{R}^r$. The power constraint per channel use is $\frac{E\|x_i\|^2}{r} = P_t$, which translates to $\|v_i\|^2 = rP_t$.
- At receiver i

$$u_iy_i = u_iv_ih_{ii}s_i + \sum_{j:A_{ij}=0}^{n} u_iv_jh_{ij}s_j + \sum_{j:A_{ij}=\times}^{n} u_iv_jh_{ij}s_j + u_iz_i.$$
Let us Look at the Sum Rate

- Transmitter i has signal s_i, $E|s_i|^2 = 1$ and transmits $x_i = v_is_i \in \mathcal{R}^r$.
 The power constraint per channel use is $\frac{E\|x_i\|^2}{r} = P_t$, which translates to $\|v_i\|^2 = rP_t$.
- At receiver i

\[
u_iy_i = u_iv_ih_is_i + \sum_{j:A_{ij}=0}^n u_i v_j h_js_j + \sum_{j:A_{ij}=\times}^n u_i v_j h Js_j + u_iz_i.
\]

- Therefore the sum rate is

\[
C_{sum} = n \sum_{i=1}^1 \frac{1}{r} \log \left(1 + \frac{|u_iv_i|^2 |h_is_i|^2}{\sigma^2 \|u_i\|^2 + \sum_{j:A_{ij}=\times}^n |u_i v_j|^2 |h_{ij}|^2} \right)
\]

or

\[
C_{sum} = n \sum_{i=1}^n \frac{1}{r} \log \left(1 + \frac{|u_iv_i|^2 rP_t |h_{is_i}|^2}{\sigma^2 + \sum_{j:A_{ij}=\times}^n |u_i v_j|^2 |rP_t h_{ij}|^2} \right)
\]
The Sum Rate

\[C_{\text{sum}} = \sum_{i=1}^{n} \frac{1}{r} \log \left(1 + \frac{|u_i v_i|^2}{\|u_i\|^2 \|v_i\|^2 r P_t |h_{ii}|^2} \sigma^2 + \sum_{j:A_{ij}=1}^{n} \frac{|u_i v_j|^2}{\|u_i\|^2 \|v_j\|^2 r P_t |h_{ij}|^2} \right) \]
The Sum Rate

\[
C_{sum} = \sum_{i=1}^{n} \frac{1}{r} \log \left(1 + \frac{|u_i v_i|^2}{\|u_i\|^2 \|v_i\|^2} \frac{rP_t |h_{ii}|^2}{\sigma^2 + \sum_{j:A_{ij}=1} \frac{|u_i v_j|^2}{\|u_i\|^2 \|v_j\|^2} rP_t |h_{ij}|^2} \right)
\]

- Looking at the results of the simulations for "AltMin", the value \(\frac{|u_i v_i|^2}{\|u_i\|^2 \|v_i\|^2}\) was often very small.
The Sum Rate

\[C_{sum} = \sum_{i=1}^{n} \frac{1}{r} \log \left(1 + \frac{|u_i v_i|^2}{\|u_i\|^2\|v_i\|^2} \frac{rP_t |h_{ii}|^2}{\sigma^2 + \sum_{j:A_{ij}=\times} \frac{|u_i v_j|^2}{\|u_i\|^2\|v_j\|^2} \frac{rP_t |h_{ij}|^2}{\|u_i\|^2\|v_j\|^2}} \right) \]

- Looking at the results of the simulations for "AltMin", the value \(\frac{|u_i v_i|^2}{\|u_i\|^2\|v_i\|^2} \) was often very small.
- Therefore we will impose the extra constraint in the algorithm that

\[\frac{|u_i v_i|^2}{\|u_i\|^2\|v_i\|^2} \geq c, \quad \text{for some } 0 \leq c \leq 1. \]
Algorithm 3 AltMinCon

Inputs: n, r, S, c, P_t. **Initialization:** $U_0 \in \mathcal{R}^{n \times r}$ random.

From $i = 0$ until convergence,

- Solve for V_i:

 \[
 \begin{align*}
 &\text{minimize} \quad \| (U_{i-1} V_i)_S \| \\
 &\text{subject to} \quad \| v_{ij}^{(i)} \| \leq 1 \text{ and } (u_{ij}^{(i-1)})^T v_{ij}^{(i)} \geq c \| u_{ij}^{(i-1)} \| \quad \forall j
 \end{align*}
 \]

- Solve for U_i:

 \[
 \begin{align*}
 &\text{minimize} \quad \| (U_i V_i)_S \| \\
 &\text{subject to} \quad \| u_{ij}^{(i)} \| \leq 1 \text{ and } (u_{ij}^{(i)})^T v_{ij}^{(i)} \geq c \| v_{ij}^{(i)} \| \quad \forall j
 \end{align*}
 \]

If algorithm converges to V_N and U_N,

- normalize columns of V_N to satisfy transmit power constraint $\| v_{ij}^{(N)} \| \leq \sqrt{r} P_t$.

- output V_N and U_N.

S includes only the set of indices where $A_{ij} = 0$.

Babak Hassibi (Caltech)
AltMin vs AltMinCon

\[\frac{|\mathbf{u}_j^T \mathbf{v}_j|}{\|\mathbf{u}_j\| \|\mathbf{v}_j\|} \]

\[j \]

AltMin
AltMinCon

Babak Hassibi (Caltech)
Hexagonal Grid: Results

<table>
<thead>
<tr>
<th>N</th>
<th>DoF</th>
<th>FreqReuse</th>
<th>Coloring</th>
<th>AltMin</th>
<th>AltMinCon</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1/18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.5302</td>
<td></td>
<td>14.7916</td>
<td></td>
<td>6.2415</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1/11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.3473</td>
<td></td>
<td>23.1307</td>
<td></td>
<td>13.0369</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1/9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29.0311</td>
<td></td>
<td>29.2044</td>
<td></td>
<td>14.9266</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>1/11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41.2803</td>
<td></td>
<td>39.0702</td>
<td></td>
<td>22.3766</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>1/11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60.4578</td>
<td></td>
<td>62.7105</td>
<td></td>
<td>35.1663</td>
<td></td>
</tr>
</tbody>
</table>

Better, but still not quite good enough. What is going on?
Hexagonal Grid: Results

- DoF

<table>
<thead>
<tr>
<th>DoF</th>
<th>FreqReuse</th>
<th>Coloring</th>
<th>AltMin</th>
<th>AltMinCon</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1/18</td>
<td>1/11</td>
<td>1/9</td>
<td>1/11</td>
</tr>
</tbody>
</table>

Better, but still not quite good enough. What is going on?
Hexagonal Grid: Results

- **DoF**

<table>
<thead>
<tr>
<th></th>
<th>FreqReuse</th>
<th>Coloring</th>
<th>AltMin</th>
<th>AltMinCon</th>
</tr>
</thead>
<tbody>
<tr>
<td>DoF</td>
<td>1/18</td>
<td>1/11</td>
<td>1/9</td>
<td>1/11</td>
</tr>
</tbody>
</table>

- **Sum Rate**

<table>
<thead>
<tr>
<th></th>
<th>FreqReuse</th>
<th>Coloring</th>
<th>AltMin</th>
<th>AltMinCon</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N = 8$</td>
<td>13.5302</td>
<td>14.7916</td>
<td>6.2415</td>
<td>11.3251</td>
</tr>
<tr>
<td>$N = 18$</td>
<td>23.3473</td>
<td>23.1307</td>
<td>13.0369</td>
<td>20.6579</td>
</tr>
<tr>
<td>$N = 24$</td>
<td>29.0311</td>
<td>29.2044</td>
<td>14.9266</td>
<td>23.7311</td>
</tr>
<tr>
<td>$N = 32$</td>
<td>41.2803</td>
<td>39.0702</td>
<td>22.3766</td>
<td>34.6017</td>
</tr>
<tr>
<td>$N = 50$</td>
<td>60.4578</td>
<td>62.7105</td>
<td>35.1663</td>
<td>54.3691</td>
</tr>
</tbody>
</table>

Better, but still not quite good enough. What is going on?
Hexagonal Grid: Results

- **DoF**

<table>
<thead>
<tr>
<th>DoF</th>
<th>FreqReuse</th>
<th>Coloring</th>
<th>AltMin</th>
<th>AltMinCon</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/18</td>
<td>1/11</td>
<td>1/9</td>
<td>1/11</td>
<td></td>
</tr>
</tbody>
</table>

- **Sum Rate**

<table>
<thead>
<tr>
<th>N</th>
<th>FreqReuse</th>
<th>Coloring</th>
<th>AltMin</th>
<th>AltMinCon</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>13.5302</td>
<td>14.7916</td>
<td>6.2415</td>
<td>11.3251</td>
</tr>
<tr>
<td>18</td>
<td>23.3473</td>
<td>23.1307</td>
<td>13.0369</td>
<td>20.6579</td>
</tr>
<tr>
<td>24</td>
<td>29.0311</td>
<td>29.2044</td>
<td>14.9266</td>
<td>23.7311</td>
</tr>
<tr>
<td>32</td>
<td>41.2803</td>
<td>39.0702</td>
<td>22.3766</td>
<td>34.6017</td>
</tr>
<tr>
<td>50</td>
<td>60.4578</td>
<td>62.7105</td>
<td>35.1663</td>
<td>54.3691</td>
</tr>
</tbody>
</table>

Better, but still not quite good enough. What is going on?
Back to the Sum Rate

\[C_{sum} = \sum_{i=1}^{n} \frac{1}{r} \log \left(1 + \frac{|u_i v_i|^2}{\|u_i\|^2 \|v_i\|^2} \frac{rP_t |h_{ii}|^2}{\sigma^2 + \sum_{j:A_{ij}=1} |u_i v_j|^2 \frac{rP_t |h_{ij}|^2}{\|u_i\|^2 \|v_j\|^2}} \right) \]
Back to the Sum Rate

\[C_{sum} = \sum_{i=1}^{n} \frac{1}{r} \log \left(1 + \frac{|u_i v_i|^2}{\|u_i\|^2 \|v_i\|^2} \frac{r P_t |h_{ii}|^2}{\sigma^2 + \sum_{j:A_{ij}=\times} \frac{|u_i v_j|^2}{\|u_i\|^2 \|v_j\|^2} r P_t |h_{ij}|^2} \right) \]

Simulations show that the interference terms (which are ignored in the structure of \(A \)) may not be very small.
Back to the Sum Rate

$$C_{\text{sum}} = \sum_{i=1}^{n} \frac{1}{r} \log \left(1 + \frac{|u_i v_i|^2}{\|u_i\|^2 \|v_i\|^2} \frac{r P_t |h_{ii}|^2}{\sigma^2 + \sum_{j:A_{ij}=\times} \frac{|u_i v_j|^2}{\|u_i\|^2 \|v_j\|^2}} \right)$$

- Simulations show that the interference terms (which are ignored in the structure of A) may not be very small.
- Maximizing C_{sum} directly is not possible, since we do not know the h_{ij}.
Back to the Sum Rate

\[C_{sum} = \sum_{i=1}^{n} \frac{1}{r} \log \left(1 + \frac{|u_i v_i|^2}{\|u_i\|^2 \|v_i\|^2} rP_t |h_{ii}|^2}{\sigma^2 + \sum_{j:A_{ij} = \times} \frac{|u_i v_j|^2}{\|u_i\|^2 \|v_j\|^2} rP_t |h_{ij}|^2} \right) \]

- Simulations show that the interference terms (which are ignored in the structure of A) may not be very small.
- Maximizing \(C_{sum} \) directly is not possible, since we do not know the \(h_{ij} \)—we only want to use topological information.
Back to the Sum Rate

\[C_{\text{sum}} = \sum_{i=1}^{n} \frac{1}{r} \log \left(1 + \frac{|u_i v_i|^2}{\|u_i\|_2^2 \|v_i\|_2^2} rP_t |h_{ii}|^2 }{\sigma^2 + \sum_{j:A_{ij}=1}^{n} \frac{|u_i v_j|^2}{\|u_i\|_2^2 \|v_j\|_2^2} rP_t |h_{ij}|^2 } \right) \]

- Simulations show that the interference terms (which are ignored in the structure of A) may not be very small.
- Maximizing \(C_{\text{sum}} \) directly is not possible, since we do not know the \(h_{ij} \)—we only want to use topological information.
- However, since we know which cell each user \(j \) is in, from the path-loss model, we have an idea of \(E|h_{ij}|^2 \)
Back to the Sum Rate

\[
C_{sum} = \sum_{i=1}^{n} \frac{1}{r} \log \left(1 + \frac{|u_i v_i|^2}{\|u_i\|^2 \|v_i\|^2} \frac{r P_t |h_{ii}|^2}{\sigma^2 + \sum_{j: A_{ij}=\times} |u_i v_j|^2 \|u_i\|^2 \|v_j\|^2} r P_t |h_{ij}|^2 \right)
\]

- Simulations show that the interference terms (which are ignored in the structure of \(A\)) may not be very small.
- Maximizing \(C_{sum}\) directly is not possible, since we do not know the \(h_{ij}\)—we only want to use topological information.
- However, since we know which cell each user \(j\) is in, from the path-loss model, we have an idea of \(E|h_{ij}|^2\).
Proposed Algorithm

We therefore propose

\[
\min_{U \in \mathbb{R}^{n \times r}, V \in \mathbb{R}^{r \times n}} \sum_{(i, j) \in S, i \neq j} |u_i v_j|^2 + \lambda \sum_{(i, j) \in S} |u_i v_j|^2 E_{|h_{ij}|^2}
\]

where \(E_{|h_{ij}|^2} \) depends only on the (distance of the) cells in which receiver \(i \) and transmitter \(j \) live, subject to

\[
|u_i v_i|^2 \|u_i\|^2 \|v_i\|^2 \geq c,
\]

for some \(0 \leq c \leq 1 \).

The above can also be solved in an alternating minimization fashion.
Proposed Algorithm

We therefore propose

$$\min_{U \in \mathbb{R}^{n \times r}, V \in \mathbb{R}^{r \times n}} \sum_{(i,j) \in S, i \neq j} |u_i v_j|^2 + \lambda \sum_{(i,j) \notin S} |u_i v_j|^2 E|h_{ij}|^2$$

where $E|h_{ij}|^2$ depends only on the (distance of the) cells in which receiver i and transmitter j live, subject to

$$\frac{|u_i v_i|^2}{\|u_i\|^2 \|v_i\|^2} \geq c, \quad \text{for some } 0 \leq c \leq 1.$$
Proposed Algorithm

We therefore propose

\[\min_{U \in \mathbb{R}^{n \times r}, V \in \mathbb{R}^{r \times n}} \sum_{(i,j) \in S, i \neq j} |u_i v_j|^2 + \lambda \sum_{(i,j) \notin S} |u_i v_j|^2 E|h_{ij}|^2 \]

where \(E|h_{ij}|^2 \) depends only on the (distance of the) cells in which receiver \(i \) and transmitter \(j \) live, subject to

\[\frac{|u_i v_i|^2}{\|u_i\|^2 \|v_i\|^2} \geq c, \quad \text{for some } 0 \leq c \leq 1. \]

- The above can also be solved in an alternating minimization fashion.
Hexagonal Grid: Results

- **DoF**

<table>
<thead>
<tr>
<th></th>
<th>FreqReuse</th>
<th>Coloring</th>
<th>AltMin</th>
<th>AltMinCon</th>
<th>RateOpt</th>
</tr>
</thead>
<tbody>
<tr>
<td>DoF</td>
<td>1/18</td>
<td>1/11</td>
<td>1/9</td>
<td>1/11</td>
<td>1/8</td>
</tr>
</tbody>
</table>

We get 10%-20% improvement in the sum rate.
Hexagonal Grid: Results

DoF

<table>
<thead>
<tr>
<th>DoF</th>
<th>FreqReuse</th>
<th>Coloring</th>
<th>AltMin</th>
<th>AltMinCon</th>
<th>RateOpt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/18</td>
<td>1/11</td>
<td>1/9</td>
<td>1/11</td>
<td>1/8</td>
<td></td>
</tr>
</tbody>
</table>

Sum Rate

<table>
<thead>
<tr>
<th>N</th>
<th>FreqReuse</th>
<th>Coloring</th>
<th>AltMin</th>
<th>AltMinCon</th>
<th>RateOpt</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>13.5302</td>
<td>14.7916</td>
<td>6.2415</td>
<td>11.3251</td>
<td>15.4326</td>
</tr>
<tr>
<td>18</td>
<td>23.3473</td>
<td>23.1307</td>
<td>13.0369</td>
<td>20.6579</td>
<td>28.1829</td>
</tr>
<tr>
<td>24</td>
<td>29.0311</td>
<td>29.2044</td>
<td>14.9266</td>
<td>23.7311</td>
<td>32.2458</td>
</tr>
<tr>
<td>32</td>
<td>41.2803</td>
<td>39.0702</td>
<td>22.3766</td>
<td>34.6017</td>
<td>47.0489</td>
</tr>
<tr>
<td>50</td>
<td>60.4578</td>
<td>62.7105</td>
<td>35.1663</td>
<td>54.3691</td>
<td>70.4724</td>
</tr>
</tbody>
</table>

We get 10%-20% improvement in the sum rate.
Hexagonal Grid: Results

- **DoF**

<table>
<thead>
<tr>
<th></th>
<th>FreqReuse</th>
<th>Coloring</th>
<th>AltMin</th>
<th>AltMinCon</th>
<th>RateOpt</th>
</tr>
</thead>
<tbody>
<tr>
<td>DoF</td>
<td>1/18</td>
<td>1/11</td>
<td>1/9</td>
<td>1/11</td>
<td>1/8</td>
</tr>
</tbody>
</table>

- **Sum Rate**

<table>
<thead>
<tr>
<th></th>
<th>FreqReuse</th>
<th>Coloring</th>
<th>AltMin</th>
<th>AltMinCon</th>
<th>RateOpt</th>
</tr>
</thead>
<tbody>
<tr>
<td>N = 8</td>
<td>13.5302</td>
<td>14.7916</td>
<td>6.2415</td>
<td>11.3251</td>
<td>15.4326</td>
</tr>
<tr>
<td>N = 18</td>
<td>23.3473</td>
<td>23.1307</td>
<td>13.0369</td>
<td>20.6579</td>
<td>28.1829</td>
</tr>
<tr>
<td>N = 24</td>
<td>29.0311</td>
<td>29.2044</td>
<td>14.9266</td>
<td>23.7311</td>
<td>32.2458</td>
</tr>
<tr>
<td>N = 32</td>
<td>41.2803</td>
<td>39.0702</td>
<td>22.3766</td>
<td>34.6017</td>
<td>47.0489</td>
</tr>
<tr>
<td>N = 50</td>
<td>60.4578</td>
<td>62.7105</td>
<td>35.1663</td>
<td>54.3691</td>
<td>70.4724</td>
</tr>
</tbody>
</table>

We get 10%-20% improvement in the sum rate.
Ad hoc Network Example

- N=100 Tx-Rx pairs randomly placed in a 20×20 square
- max distance btw Tx-Rx is 1
- average SNR to desired user $= 20db$
- path loss model:
 \[h_{ij} \sim \mathcal{N}(0, \left(\frac{d_{ij}}{r_0} \right)^{-4.0}) \]

Algorithms

1. greedy Coloring (Coloring)
2. matrix Completion (AltMin)
3. constrained matrix Completion (AltMinCon)
4. rate optimization (RateOpt)
Ad hoc Network Results

- Average values over 25 realizations

We obtain a 40% improvement in the sum rate.
Ad hoc Network Results

- Average values over 25 realizations

<table>
<thead>
<tr>
<th>Coloring</th>
<th>AltMin</th>
<th>AltMinCon</th>
<th>RateOpt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rank</td>
<td>6.28</td>
<td>6.16</td>
<td>6.16</td>
</tr>
<tr>
<td>Sum Rate</td>
<td>56.0615</td>
<td>51.0674</td>
<td>55.9420</td>
</tr>
</tbody>
</table>

We obtain a 40% improvement in the sum rate.
Ad hoc Network Results

- Average values over 25 realizations

![Graph showing Ad hoc network results]

<table>
<thead>
<tr>
<th>Coloring</th>
<th>AltMin</th>
<th>AltMinCon</th>
<th>RateOpt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rank</td>
<td>6.28</td>
<td>6.16</td>
<td>6.16</td>
</tr>
<tr>
<td>Sum Rate</td>
<td>56.0615</td>
<td>51.0674</td>
<td>55.9420</td>
</tr>
</tbody>
</table>

We obtain a 40% improvement in the sum rate.
Maximizing the Min-Rate

\[
C_{\text{min}} = \min_{i} \frac{1}{r} \log \left(1 + \frac{|u_i v_i|^2 \|P_t h_{ii}\|^2}{\sigma^2 + \sum_{j:A_{ij}=\times} \frac{|u_i v_j|^2 \|P_t h_{ij}\|^2}{\|u_i\|^2 \|v_j\|^2}} \right)
\]
Maximizing the Min-Rate

\[
C_{\text{min}} = \min_i \frac{1}{r} \log \left(1 + \frac{|u_i v_i|^2}{\|u_i\|^2 \|v_i\|^2} \frac{r P_t |h_{i i}|^2}{\sigma^2 + \sum_{j: A_{i j} = 1} |u_i v_j|^2 \|u_i\|^2 \|v_j\|^2} r P_t |h_{i j}|^2 \right)
\]

Here it turns out that, if the \(v_i\) are fixed, maximization over the \(u_i\) is a quasi-convex program, and vice-versa.
Maximizing the Min-Rate

\[
C_{\text{min}} = \min_i \frac{1}{r} \log \left(1 + \frac{|u_i v_i|^2}{\|u_i\|^2 \|v_i\|^2} r P_t |h_{ii}|^2 \right)
\]

\[
\frac{\sigma^2 + \sum_{j:A_{ij}=\times} |u_i v_j|^2}{r P_t |h_{ij}|^2}
\]

- Here it turns out that, if the \(v_i\) are fixed, maximization over the \(u_i\) is a quasi-convex program, and vice-versa.
- Therefore the min-rate, \(C_{\text{min}}\) can be efficiently maximized using a series of alternating quasi-convex optimizations.
Hexagonal Cell Network

- 64 users (4 x 4 x 4), SNR = 20dB, $\gamma = 3.5$
- Baseline: 3 frequency reuse

<table>
<thead>
<tr>
<th>Sum-rate algorithm</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greedy coloring</td>
<td>0.9x</td>
</tr>
<tr>
<td>TIM</td>
<td>0.5x</td>
</tr>
<tr>
<td>Altmin with TIM</td>
<td>1.1x</td>
</tr>
<tr>
<td>Altmin with full channel</td>
<td>1.4x</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Min rate-algorithm</th>
<th>min</th>
<th>5%</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greedy coloring</td>
<td>0.8x</td>
<td>0.6x</td>
<td>0.9x</td>
</tr>
<tr>
<td>TIM</td>
<td>-</td>
<td>-</td>
<td>0.5x</td>
</tr>
<tr>
<td>Altmin with TIM</td>
<td>4x</td>
<td>3x</td>
<td>~0.5x</td>
</tr>
<tr>
<td>Altmin with full channel</td>
<td>7x</td>
<td>6x</td>
<td>~0.5x</td>
</tr>
</tbody>
</table>
Ad-hoc Network

- 60 users, SNR = 20dB, $\gamma = 3.5$
- Baseline: Greedy coloring

Sum-rate algorithm

<table>
<thead>
<tr>
<th></th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIM</td>
<td>0.7x</td>
</tr>
<tr>
<td>Altmin with TIM</td>
<td>1.3x</td>
</tr>
<tr>
<td>Altmin with full channel</td>
<td>1.6x</td>
</tr>
</tbody>
</table>

Min rate-algorithm

<table>
<thead>
<tr>
<th></th>
<th>min</th>
<th>5%</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIM</td>
<td>-</td>
<td>-</td>
<td>0.75x</td>
</tr>
<tr>
<td>Altmin with TIM</td>
<td>4x</td>
<td>3x</td>
<td>~0.75x</td>
</tr>
<tr>
<td>Altmin with full channel</td>
<td>7x</td>
<td>4x</td>
<td>~0.75x</td>
</tr>
</tbody>
</table>
Discussion and Conclusion

Interference alignment
▶ unreasonable CSIT assumptions (not very practical)

Topological interference alignment
▶ requires only topological information of the network; can significantly improve the DoF
▶ reduces to low rank matrix completion
▶ related to network coding, index coding, secret sharing (when over finite fields)

In practice DoF can be misleading
▶ developed alternative algorithms (moved away somewhat from TIM)
▶ promising preliminary results, especially, for the min-rate: there is something to be had
Discussion and Conclusion

- Interference alignment
 - unreasonable CSIT assumptions (not very practical)

Topological interference alignment
- requires only topological information of the network; can significantly improve the DoF
- reduces to low rank matrix completion
- related to network coding, index coding, secret sharing (when over finite fields)

In practice DoF can be misleading
- developed alternative algorithms (moved away somewhat from TIM)
- promising preliminary results, especially, for the min-rate: there is something to be had
Discussion and Conclusion

- **Interference alignment**
 - unreasonable CSIT assumptions (not very practical)

- **Topological interference alignment**
 - requires only topological information of the network; can significantly improve the DoF
 - reduces to low rank matrix completion
 - related to network coding, index coding, secret sharing (when over finite fields)
Discussion and Conclusion

- Interference alignment
 - unreasonable CSIT assumptions (not very practical)
- Topological interference alignment
 - requires only topological information of the network; can significantly improve the DoF
 - reduces to low rank matrix completion
 - related to network coding, index coding, secret sharing (when over finite fields)
- In practice DoF can be misleading
 - developed alternative algorithms (moved away somewhat from TIM)
 - promising preliminary results, especially, for the min-rate: there is something to be had
Possible Future Work

1. Algorithmic issues: theoretical analysis, fast implementation

2. What are good initializations for the various Alternating Projection methods?

3. Can we give conditions for optimality of the solution of AP method, or performance bounds otherwise?

4. Other matrix completion-based approaches
 - Identify scenarios where we can have an advantage
 - Can we analytically determine the advantage of TIM in ad-hoc and cellular networks using random geometric graph theory?
 - What are there other practical considerations to take into account?

5. How to combine this with MIMO

6. Study of the finite field problem
Possible Future Work

- Algorithmic issues: theoretical analysis, fast implementation
 1. What are good initializations for the various Alternating Projection methods?
 2. Can we give conditions for optimality of the solution of AP method, or performance bounds otherwise?
 3. Other matrix completion-based approaches
Possible Future Work

- Algorithmic issues: theoretical analysis, fast implementation
 1. What are good initializations for the various Alternating Projection methods?
 2. Can we give conditions for optimality of the solution of AP method, or performance bounds otherwise?
 3. Other matrix completion-based approaches

- Identify scenarios where we can have an advantage
 1. Can we analytically determine the advantage of TIM in ad-hoc and cellular networks using random geometric graph theory?
 2. What are there other practical considerations to take into account?
Possible Future Work

- Algorithmic issues: theoretical analysis, fast implementation
 1. What are good initializations for the various Alternating Projection methods?
 2. Can we give conditions for optimality of the solution of AP method, or performance bounds otherwise?
 3. Other matrix completion-based approaches
- Identify scenarios where we can have an advantage
 1. Can we analytically determine the advantage of TIM in ad-hoc and cellular networks using random geometric graph theory?
 2. What are there other practical considerations to take into account?
- How to combine this with MIMO
Possible Future Work

- Algorithmic issues: theoretical analysis, fast implementation
 1. What are good initializations for the various Alternating Projection methods?
 2. Can we give conditions for optimality of the solution of AP method, or performance bounds otherwise?
 3. Other matrix completion-based approaches

- Identify scenarios where we can have an advantage
 1. Can we analytically determine the advantage of TIM in ad-hoc and cellular networks using random geometric graph theory?
 2. What are there other practical considerations to take into account?

- How to combine this with MIMO
- Study of the finite field problem
Asume K cells, with N users in each.
Asume K cells, with N users in each. In total, KN users.
MIMO

- Assume K cells, with N users in each. In total, KN users.
- Let each base station have M transmit antennas.
MIMO

- Asume K cells, with N users in each. In total, KN users.
- Let each base station have M transmit antennas. Let each user have Q receive antennas (most often $Q = 1$).
MIMO

- Assume K cells, with N users in each. In total, KN users.
- Let each base station have M transmit antennas. Let each user have Q receive antennas (most often $Q = 1$).
- m^k_n: the message for user n in cell k.
MIMO

- Asume K cells, with N users in each. In total, KN users.
- Let each base station have M transmit antennas. Let each user have Q receive antennas (most often $Q = 1$).
- m^k_n: the message for user n in cell k.
- Each user receives a signal message (above) over r channel uses.
MIMO

- Assume K cells, with N users in each. In total, KN users.
- Let each base station have M transmit antennas. Let each user have Q receive antennas (most often $Q = 1$).
- m_n^k: the message for user n in cell k.
- Each user receives a signal message (above) over r channel uses.
- The transmitted signal from base station k during r consecutive channel uses:

$$S^k = \sum_{n=1}^{N} V_n^k m_n^k,$$

where $V \in C^{r \times M}$ are the linear dispersion matrices.
Signal received at i-th user in cell k, over r channel uses:

$$Y_i^k = V_i^k h_i^k m_i^k + \sum_{n \neq i} V_n^k h_i^k m_n^k + \sum_{l \neq k} \sum_{n=1}^N V_n^l h_i^l m_n^l + Z_i^k,$$

where Y_i^k, h_i^k, h_i^l, $Z_i^k \in \mathbb{C}^{r \times Q}$.
MIMO

- Signal received at i-th user in cell k, over r channel uses:

\[Y_i^k = V_i^k h_i^k m_i^k + \sum_{n \neq i} V_n^k h_i^k m_n^k + \sum_{l \neq k} \sum_{n=1}^N V_n^l h_i^l m_n^l + Z_i^k, \]

where $Y_i^k, h_i^k, h_i^l, Z_i^k \in \mathbb{C}^{r \times Q}$.

- User i in cell k will have a decoder matrix $U_i^k \in \mathbb{C}^{Q \times r}$ so that it will decode its message as

\[
\text{trace}(U_i^k Y_i^k) = \text{trace}(U_i^k V_i^k h_i^k) m_i^k + \sum_{n \neq i} \text{trace}(U_i^k V_n^k h_i^k) m_n^k + \\
\sum_{l \neq k} \sum_{n=1}^N \text{trace}(U_i^k V_n^l h_i^l) m_n^l + \text{trace}(U_i^k Z_i^k).
\]
The rate to the i-th user in cell k is therefore:

$$R_i^k = \frac{1}{r} \log \frac{|\text{trace}(U_i^k V_i^k h_i^k)|^2}{\sigma^2 \|U_i^k\|_F^2 + \sum_{n \neq i} |\text{trace}(U_i^k V_n^k h_i^k)|^2 + \sum_{l \neq k} \sum_{n=1}^N |\text{trace}(U_i^k V_n^l h_l^i)|^2}$$
MIMO

- The rate to the i-th user in cell k is therefore:

$$R^k_i = \frac{1}{r} \log \frac{|\text{trace}(U_i^k V_i^k h_i^k)|^2}{\sigma^2 \|U_i^k\|_F^2 + \sum_{n \neq i} |\text{trace}(U_i^k V_n^k h_i^k)|^2 + \sum_{l \neq k} \sum_{n=1}^N |\text{trace}(U_i^k V_n^l h_i^l)|^2}$$

- As before we can design the precoding and decoding matrices V_i^k and U_i^k to either maximize the sum rate

$$R = \sum_{i, k} R_i^k,$$

or the minimum rate

$$R_{\text{min}} = \min_{i, k} R_i^k.$$
The rate to the i-th user in cell k is therefore:

$$R_i^k = \frac{1}{r} \log \frac{|\text{trace}(U_i^k V_i^k h_i^k)|^2}{\sigma^2 \|U_i^k\|_F^2 + \sum_{n \neq i} |\text{trace}(U_i^k V_n^k h_i^k)|^2 + \sum_{l \neq k} \sum_{n=1}^{N} |\text{trace}(U_i^k V_n^l h_i^l)|^2}$$

As before we can design the precoding and decoding matrices V_i^k and U_i^k to either maximize the sum rate

$$R = \sum_{i,k} R_i^k,$$

or the minimum rate

$$R_{\text{min}} = \min_{i,k} R_i^k.$$
The rate to the i-th user in cell k is therefore:

$$R_i^k = \frac{1}{r} \log \frac{|\text{trace}(U_i^k V_i^k h_i^k)|^2}{\sigma^2 \|U_i^k\|_F^2 + \sum_{n \neq i} |\text{trace}(U_i^k V_n^k h_i^k)|^2 + \sum_{l \neq k} \sum_{n=1}^N |\text{trace}(U_i^k V_n^l h_i^l)|^2}$$

As before we can design the precoding and decoding matrices V_i^k and U_i^k to either maximize the sum rate

$$R = \sum_{i, k} R_i^k,$$

or the minimum rate

$$R_{\text{min}} = \min_{i, k} R_i^k.$$

Things are a bit more complicated now because we have matrices and because the channels couple in more tightly. But, otherwise, everything else is the same.
Hexagonal-cell-network: 4 x 4, 3 antennas

- FDMA
- GC
- TIM

MIMO